BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 52 (2), 617—618 (1979)

Oxidation of Ammonia with Lattice Oxygen of Metal Oxides by Pulse Reaction Technique

Yukio Kosaki,* Akira Miyamoto, and Yuichi Murakami Department of Synthetic Chemistry, Faculty of Engineering, Nagoya University,

> Furo-cho, Chikusa-ku, Nagoya 464 (Received July 6, 1978)

Synopsis. On V_2O_5 , MoO_3 , and WO_3 , lattice oxygen has been found to be the active oxygen species for the *catalytic* oxidation of NH_3 , whereas on MnO_2 , Co_3O_4 , Fe_2O_3 , and NiO_3 , adsorbed oxygen also played a significant role in the reaction. NO has been found to be an intermediate in the reaction of NH_3 with lattice oxygen.

Many studies have been reported on the reaction of hydrocarbons with the lattice oxygen of metal oxides in connection with the catalytic oxidation of hydrocarbons. On a number of catalysts, lattice oxygen (O²⁻) has been found to play an important role in the catalytic oxidation of hydrocarbons. In a previous paper,1) the authors investigated the catalytic oxidation of NH3 on various metal oxides by a flow technique, and found that NO is an important gas phase intermediate in the oxidation of NH₃. The catalytic oxidation of NH₃ was shown to have a specific character, in that NH3 is first oxidized to NO (deep oxidation product) which then reacts with NH₃ (the NO-NH₃ reaction) to form N₂ and N₂O (partial oxidation products). This is in contrast with the oxidation of hydrocarbons. In the present work, the reaction of NH₃ with the lattice oxygen of metal oxides has been studied to determine the role of lattice oxygen in the oxidation of NH3 and the importance of NO as an intermediate in the reaction of NH₃ with metal oxides.

Experimental

Materials. The method of preparation of metal oxides has been described previously. Commercial ammonia (99.9% purity) and oxygen (99.8% purity) were used as reactants without further purification.

Apparatus. Experiments were conducted with a pulse apparatus. The reactant and product components (NH₃, N₂, N₂O, and NO) were analyzed using gas chromatography. Helium as a carrier gas (116 ml/min) was purified with titanium metal sponge heated at 750 °C. Pulses of NH₃ with various concentrations were supplied to the reactor by a 6-way valve. 0.1 g of metal oxides were used. Before injection of each sample, the metal oxides were treated with oxygen in a gas stream for 30 min at the reaction temperature in order to regulate the oxidation state of the samples.

Results and Discussion

Activities of Metal Oxides for the Reaction with Ammonia. The conversion of NH_3 (X_{NH3}) and the selectivities to N_2 , N_2O , and NO (S_{N2} , S_{N2O} , and S_{NO}) have been obtained for various metal oxides as functions of the reaction temperature. In order to compare the activities of the metal oxides, the authors have defined T_L^{-1} , where T_L^{-1} represents the reciprocal of the absolute temperature at which X_{NH3} attains 20% and is a measure

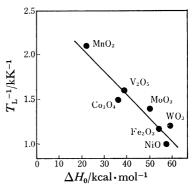


Fig. 1. Relationship between the reactivity of lattice oxygen of a metal oxide (T_L^{-1}) and the enthalpy change (ΔH_0) of the Reaction 1.

of the reactivity of the lattice oxygen of the metal oxide with NH₃. In Fig. 1, the value of $T_{\rm L}^{-1}$ for a metal oxide is shown against the enthalpy change (ΔH_0) for the following reaction;

$$M_n O_m \longrightarrow M_n O_{m-1} + \frac{1}{2} O_2,$$
 (1)

where M_nO_m represents a metal oxide before reaction. As shown in Fig. 1, a correlation was obtained between T_L^{-1} and ΔH_0 indicating that the reactivity of the metal oxide with NH₃ is determined by the enthalpy change of the Reaction 1.

In Fig. 2, the relation between $T_{\rm L}^{-1}$ and $T_{\rm C}^{-1}$ is shown, where $T_{\rm C}^{-1}$ is defined as the reciprocal of the absolute temperature at which the conversion of NH₃ in the *catalytic* oxidation of NH₃ by flow technique attains $20\%_{\rm O}^{\rm N}$. As shown in Fig. 2, the metal oxides can be divided into two groups. In the first group (V₂O₅, MoO₃, and WO₃), a correlation is obtained between $T_{\rm L}^{-1}$ and $T_{\rm C}^{-1}$, that is, $T_{\rm L}^{-1}$ is approximately equal to $T_{\rm C}^{-1}$ within the possible deviations due to the

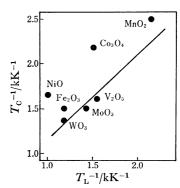


Fig. 2. Relationship between the reactivity of lattice oxygen of a metal oxide (T_L^{-1}) and the activity of the metal oxide for the *catalytic* oxidation of NH₃ (T_C^{-1}) .

differences in the reaction technique (pulse or flow technique). The correlation indicates that, on a metal oxide in the first group, the oxygen species responsible for the catalytic oxidation of NH3 is mainly the lattice oxygen of the metal oxide. In the second group (MnO₂, NiO, Fe₂O₃, and Co₃O₄), T_c^{-1} is greater than T_L^{-1} suggesting that on a metal oxide of the second group, in addition to the lattice oxygen, the adsorbed oxygen species such as O₂- or O- play a significant role in the catalytic oxidation of NH₃. This is in accordance with the results of thermal desorption, that is, the oxygen species, which desorbs at a lower temperature and is assigned to O2- or O- species, was detected for the metal oxide of the second group.^{2,3)} This classification has been supported by pulse experiments on the effects of gaseous oxygen addition on pulses. The conversion of NH3 with metal oxides of the second group was enhanced by the addition of O₂ in pulses, whereas X_{NH_3} with the metal oxide of the first group was not changed. Concerning the reaction of NH₂ with metal oxides, the influence of adsorbed oxygen, formed by the treatment with gaseous oxygen before the pulse was negligibly small—the conversion of NH₃ in the first pulse was the same as that in the second pulse measured without the treatment with gaseous oxygen. Furthermore, it is considered that the lowering of the surface lattice oxygen concentration hardly occurred in the reaction of NH₃ with metal oxides at the temperature at which $X_{\rm NH3}$ attained 20%, since the yield of N₂, the only product at the temperature, was not changed by the increasing concentration of NH₃ in the pulse.

Nitrogen Oxide as an Intermediate in the Oxidation of Ammonia with the Lattice Oxygen of Metal Oxides. As reported in a previous paper, 1) NO plays an important role as a gas phase intermediate in the catalytic oxidation of NH₃ on metal oxides. This view agrees with that of Shelef et al. 4) and Schmidt et al. 5) In the oxidation of NH₃ with lattice oxygen of Co₃O₄ and V₂O₅ at 520 °C and 528 °C respectively, the conversion of NH₃ was 100

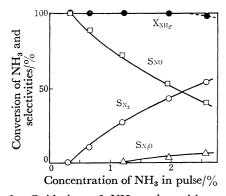


Fig. 3. Oxidation of NH₃ pulse with various NH₃ concentrations by lattice oxygen of Co₃O₄.
Reaction temperature=520 °C. Pulse size=7.42 cm³.

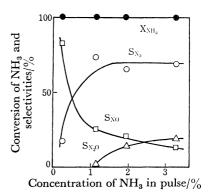


Fig. 4. Oxidation of NH_3 pulse with various NH_3 concentrations by lattice oxygen of V_2O_5 . Reaction temperature=528 °C. Pulse size=7.42 cm³.

% and all of NO, N₂, and N₂O were formed irrespective of the inlet concentration of NH₃. As the concentration of NH₃ in the pulse decreased (Figs. 3 and 4), $S_{\rm NO}$ increased to 100%, and $S_{\rm N2O}$ and $S_{\rm N2}$ decreased to 0%. The results can be explained by the following scheme;

$$NH_3 \xrightarrow{Lattice \text{ oxygen}} NO \xrightarrow{NH_3} N_2, N_2O,$$
 (2)

where NH₃ is at first oxidized by lattice oxygen to NO which then reacts with NH₃ (the NO-NH₃ reaction) to form N₂ and N₂O (Step II). The NO-NH₃ reaction (Step II) takes place catalytically under the experimental conditions of the present work.⁶⁾ According to the scheme, the activity of a metal oxide is determined by Step I, whereas the selectivities to N2 and N2O are limited by the relative rate of Step II to that of Step I. Since Step I and Step II are a monomolecular and a bimolecular reactions respectively, the relative rate of Step II to that of Step I, should increase with an increase in the concentration of NH3, which is in accord with the experimental results shown in Figs. 3 and 4. Furthermore, in Figs. 3 and 4, the S_{NO} on V_2O_5 decreases more markedly than that on Co₃O₄ with increasing concentration of NH₃, in accordance with the scheme, since the activity of V₂O₅ for the NO-NH₃ reaction is higher than that of Co₃O₄.6) Thus, it is concluded that NO plays an important role as a gas phase intermediate in the reaction of NH₃ with metal oxides as well as in the *catalytic* oxidation of NH₃.

References

- 1) Y. Murakami, Y. Kosaki, M. Motokawa, Y. Ooyabu, and A. Miyamoto, *Nippon Kagaku Kaishi*, **1977**, 612.
 - 2) B. Halpern and J. E. Germain, J. Catal., 37, 44 (1975).
 - 3) N. Yamazoe, Shokubai, 19, 133 (1977).
 - 4) H. S. Gandhi and M. Shelef, J. Catal., 40, 312 (1975).
 - 5) T. Pignet and L. D. Schmidt, J. Catal., 40, 212 (1975).
- 6) Y. Murakami, K. Hayashi, K. Yasuda, T. Ito, T. Minami, and A. Miyamoto, Nippon Kagaku Kaishi, 1977, 173.